689. Maximum Sum of 3 Non-Overlapping Subarrays
689. Maximum Sum of 3 Non-Overlapping Subarrays
[Problem]
Intuition
- Using a sliding window approach, we can calculate the sum of consecutive subarrays.
- And by keeping track of the best sums for one, two, and three subarrays at each step, we can build the solution incrementally.
Approach
Use a sliding window to calculate the sums of three consecutive subarrays of size
k
. Update the sums as the window slides.- Maintain variables to store:
- The maximum sum of the first subarray (
max1
) and its index (index1
). - The maximum sum of the first two subarrays combined (
max12
) and their indices (index12_1
,index12_2
). - The maximum sum of all three subarrays combined (
max123
) and their indices (stored inresult
).
- The maximum sum of the first subarray (
- For each possible starting point
i
of the first subarray:- Update the sliding window sums for the three subarrays.
- Update
max1
and its index if the currentsum1
is greater. - Update
max12
and the indices of the two subarrays ifmax1 + sum2
is greater. - Update
max123
and the indices of all three subarrays ifmax12 + sum3
is greater.
Complexity Analysis
- Time Complexity: O(n):
- Self explanatory.
- Space Complexity: O(1)
- No extra space used.
Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
class Solution {
public int[] maxSumOfThreeSubarrays(int[] nums, int k) {
int n = nums.length;
// Sums for the three sliding windows
int sum1 = 0, sum2 = 0, sum3 = 0;
// Maximum sums for individual and combined subarrays
int max1 = 0, max12 = 0, max123 = 0;
// Indices to store the starting positions of subarrays
int index1 = 0, index12_1 = 0, index12_2 = k;
int[] result = {0, k, 2 * k}; // Default result with initial indices
// Calculate initial sums for the first three subarrays
for (int i = 0; i < k; i++) {
sum1 += nums[i];
sum2 += nums[i + k];
sum3 += nums[i + 2 * k];
}
// Initialize maximum sums
max1 = sum1;
max12 = sum1 + sum2;
max123 = sum1 + sum2 + sum3;
// Iterate through the array for all possible starting points
for (int i = 0; i <= n - 3 * k; i++) {
// Update sums for sliding windows if not the first iteration
if (i > 0) {
sum1 = sum1 - nums[i - 1] + nums[i + k - 1];
sum2 = sum2 - nums[i + k - 1] + nums[i + 2 * k - 1];
sum3 = sum3 - nums[i + 2 * k - 1] + nums[i + 3 * k - 1];
}
// Update max1 and its index
if (sum1 > max1) {
max1 = sum1;
index1 = i;
}
// Update max12 and its indices
if (max1 + sum2 > max12) {
max12 = max1 + sum2;
index12_1 = index1;
index12_2 = i + k;
}
// Update max123 and result indices
if (max12 + sum3 > max123) {
max123 = max12 + sum3;
result = new int[]{index12_1, index12_2, i + 2 * k};
}
}
// Return the indices of the three subarrays
return result;
}
}
This post is licensed under CC BY 4.0 by the author.